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We analyze the meaning of the nonclassical aspects of quantum structures. We 
proceed by introducing a simple mechanistic macroscopic experimental situation 
that gives rise to quantum-like structures. We use this situation as a guiding 
example for our attempts to explain the origin of the nonclassical aspects of 
quantum structures. We see that the quantum probabilities can be introduced as 
a consequence of the presence of fluctuations on the experimental apparatuses, 
and show that the full quantum structure can be obtained in this way. We define 
the classical limit as the physical situation that arises when the fluctuations on 
the experiment apparatuses disappear. In the limit case we come to a classical 
structure, but in between we find structures that are neither quantum nor 
classical. In this sense, our approach not only gives an explanation for the 
nonclassical structure of quantum theory, but also makes it possible to define 
and study the structure describing the intermediate new situations. By investi- 
gating how the nonlocal quantum behavior disappears during the limiting 
process, we can explain the "apparent" locality of the classical macroscopic 
world. We come to the conclusion that quantum structures are the ordinary 
structures of reality, and that our difficulties of becoming aware of this fact are 
due to prescientific prejudices, some of which we point out. 

1. I N T R O D U C T I O N  

E v e r y b o d y  agrees  tha t  q u a n t u m  t h e o r y  is ve ry  d i f fe ren t  f r o m  class ical  

theor ies .  I t  is a new mechan i c s ,  b u t  also a n e w  p r o b a b i l i t y  t h e o r y  ( q u a n t u m  

p robab i l i t y ) ,  a new p r o p o s i t i o n a l  ca lcu lus  ( q u a n t u m  logic) ,  a n d  a n e w  

m e a s u r e m e n t  ca lcu lus  (* -a lgebras ) .  M a n y  aspec t s  o f  these  s t ruc tu ra l  differ-  

ences  in these  d i f fe ren t  ca t egor i e s  h a v e  been  i nves t i ga t ed  a n d  a re  p r e s e n t e d  

in this c o n f e r e n c e  o f  the  I n t e r n a t i o n a l  Q u a n t u m  S t r u c t u r e  A s s o c i a t i o n .  

D u r i n g  all these  years  n o t  m a n y  resul ts  h a v e  been  o b t a i n e d  c o n c e r n i n g  an  

e v e n t u a l  phys i ca l  e x p l a n a t i o n  fo r  the  d i f fe rence  in s t ruc tu re .  In  o u r  g r o u p  
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in Brussels we have been concentrating on this problem, and the main 
question that we want to consider is the following. Is it possible to explain 
from a physical point of view the nature of the quantum structure? We 
have been able to derive various results concerning this question and we 
shall present them in this paper. In the explanation that we shall put 
forward the nonclassical structures find their origin in two main aspects of 
physical reality: 

1.1. Experiments in General Change the States of the Entities 
under Consideration 

This fact has often been mentioned in relation with quantum mechanics. 
Indeed, in the quantum formalism an arbitrary state, represented by a ray 
of the Hilbert space, is changed by an experiment into another state, which 
is an eigenray of the operator corresponding to the experiment. Classical 
theories in principle do not give a description of changing states by 
experiments, although obviously also in the case of most macroscopic 
entities the states of these entities will be changed by the effect of the 
experiment. If, however, this change is deterministic (equivalent experiments 
on entities in equivalent states provoke the same change), it can easily be 
incorporated in a classical theory (as we shall see, the basic structures remain 
classical). Hence this aspect of change of the state by the experiment, 
although an essential aspect of quantum theory, is not its most characteristic 
feature, leading to the appearance of the nonclassical structures. 

1.2. The Presence of Fluctuations on the Experimental Situations 
Resulting in Quantum Structures 

As we know, the change of the state of a quantum entity by an 
experiment is not a deterministic process. The state changes to an eigen- 
state of the experiment and with every eigenstate an individual probability 
of change is connected. This indeterminism has been a great worry for 
many physicists trying to understand quantum physics. In earlier papers 
(Aerts, 1986, 1987, 1992a) we have proposed a possible explanation for the 
quantum probabilities. The explanation is the following: 

Probabilities arrive as limits of relative frequencies of repeated experi- 
ments. Repeated experiments mean equivalent experiments performed on 
equivalent entities in the same states. Classical probabilities arise from the 
fact that usually one cannot prepare the same states for the equivalent 
entities, which in technical language means that the prepared states are 
mixed and not pure. This "classical" situation gives rise to a classical 
probability model. Nobody has problems understanding the presence of 
this kind of classical probability, because it originates in a lack of knowl- 
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edge that we have on the real "pure" state of the prepared entity. The quest 
for a hidden variable theory substituting for quantum theory is in fact an 
attempt to explain the quantum probabilities in this classical way, as due to 
a lack of knowledge about the pure states of the prepared entities, these 
pure states being described by "hidden variables." Von Neumann's theo- 
rem (von Neumann, 1955) and later refinements (Bell, 1966; Gleason, 1957; 
Jauch and Piron, 1963; Kochen and Specker, 1967; Gudder, 1968), but 
even more the awareness of the fact that such hidden variable theories 
always lead to classical structures (Boolean propositional calculus, commu- 
tative measurement calculus, and Kolmogorovian probabillity), made it 
seem impossible to attempt to explain the origin of the quantum probabil- 
ities in this way. Therefore not so many physicists believed and believe in 
hidden variable theories. Let us put forward the explanation that we want 
to propose for the quantum probabilities. Suppose that in the situation of 
repeated experiments we do succeed in preparing equivalent states (pure 
states), but it is the equivalence of the experiments that we fail to realize; 
then also this type of situation must give rise to probabilities. Indeed, 
suppose that we consider two equivalent entities $1 and $2 prepared in the 
same state p, and "equivalent" experiments e~ on S~ and e2 on $2. If these 
experiments el and e 2 are not completely equivalent as to their effect of 
change on the state p, then they will generally lead to different results and 
different changes of state, although each individual experimental process 
can be a deterministic process. We have called this a situation of "hidden 
measurements" (Aerts, 1986) in analogy with hidden variables. Superfically 
one could think that such a situation of hidden measurements must also 
lead to classical structures, because it is essentially a sitution of hidden 
variables of the experimental apparatuses and not of the entity. This is, 
however, not true, as we shall show immediately by means of an example. 
A situation of hidden measurements always leads to a quantum-like 
probability model, and generates also the other nonclassical structures, 
non-Boolean lattices of properties, and noncommutative algebras of opera- 
tors, characteristic of quantum theory. It will be one of the aims of this 
paper to try to understand why this is so. These different hidden measure- 
ments, since they are conceived by us as members of macroscopically 
equivalent experimental situations, are fluctuations on the experimental 
situation. We shall show that if we introduce in a very natural way a 
number between 0 and 1 that parametrizes the magnitude of these fluctua- 
tions, we can recover the quantum situation for a maximal value 1 of this 
parameter, and the classical situation for minimal value 0 of the parameter. 
In between, we find an intermediate situation, giving rise to structures that 
are neither quantum nor classical, hence probability models that are neither 
Kolmogorovian nor quantum and sets of properties that are neither 
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Boolean nor  quantum.  This parameter ,  representing the magni tude  o f  the 
fluctuations on the experimental situation, can describe the limit process 
between the microworld  and the macroworld .  Fluctuat ions  are maximal  
when experimental apparatuses  are macroscopic  and entities are micro- 
scopic, and fluctuations are minimal when both  experimental situations and 
entities are macroscopic.  In  Section 2 we introduce our  example in its mos t  
simple form, as presented in Aerts (1992b), giving rise to a two-dimensional  
quan tum mechanical  structure. In  Section 3 we introduce a parametr izat ion 
o f  the fluctuations and investigate the different cases, and in Section 4 we 
study a localization procedure  for an infinite dimensional  Hilbert  space 
quan tum entity. 

2. T H E  E X A M P L E  

Some remarks about  the general concepts  that  we shall use. By the 
state p o f  a physical entity S at a certain instant t o f  time we mean a 
description o f  the "real i ty" o f  this physical entity at this instant  t o f  time. 
Hence, when we use the word  "s ta te"  we think of  the concept  o f  "pu re"  
state. The so called "mixed states" we shall regard as probabil i ty measures 
on the set o f  pure states. The state p can change when time elapses under  
the influence o f  the outer  world, and this change we will call an evolution 
process. I t  can also change under  influence o f  an experiment e on the 
entity, and this change we will call an experimental process. 

Let us now introduce our  example. We consider a physical entity that  
is a point  particle P that  can be, and can move,  on the surface o f  a sphere 
with center O and radius r. This particle P is our  physical entity (Fig. 1). 
In  our  model  o f  the point  particle we consider the point  v where the particle 
is located at a certain instant  o f  time t as representing the reality o f  this 
particle at time t, and hence its state, which we shall denote pp. We 
introduce an experiment e, tha t  is the following. We have a piece o f  elastic 

U 

Fig. 1. A point particle P is in a state Pv at the point 
v of the surface of the sphere. The experiment e consists 
of fixing a piece of elastic with one end in a point u of 
the surface of the sphere and the other end in the 
diametrically opposed point -u.  Once the elastic is 
placed, the particle P falls from v onto the elastic and 
sticks on it in a point a. Then the elastic breaks. Let us 
consider two parts, the part E 1 from a to u, and the 
part E2 from a to -u.  If the elastic breaks in El, the 
particle P will be drawn to the point -u ,  and if it 
breaks in E 2, it will be drawn to the point u. 
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E of  length 2r. This elastic is fixed, with one of its endpoints in a point u 
of the surface of  the sphere and the other endpoint in the diametrically 
opposite point - u .  Hence the elastic passes through the center O of  the 
sphere. Once the elastic is placed, the particle P falls from its original place 
v onto the elastic, and takes the shortest path when falling, and sticks on 
it in some point a. Then the piece of elastic breaks. If we consider the two 
parts of  the elastic, the part El from a to u, and the part E 2 from a to - u, 
it must break in a point of one of  these two parts. If  it breaks in E2, the 
particle P will be drawn to the point u by the elastic still connected to it, 
and we will say that the experiment eu gives outcome 01. If  it breaks in El,  
the particle P will be drawn to the point - u  by the elastic still connected 
to it, and we will say that the experiment e u gives outcome 02. This 
completes the description of the experiment eu. If  we denote the state of  the 
particle P being in the point u by p~, and the state of the particle P being 
in - u by p_ ~, then we can say that the experiment e u transforms the state 
pv into a new state P, if outcome 01 occurs, or a state P-u  if outcome o2 
occurs. This change of  state is not deterministic, in the sense that the 
original state p~ can be changed into two different states pu or P-u.  The 
probabilities connected with either of  these two possible changes by the 
experiment e u (p~ into Pu, or Pv into P-u)  depend on the internal construc- 
tion of the experimental apparatus, namely the way in which the mecha- 
nism of  breaking of  the elastic functions. We shall make the following 
hypothesis: The probability that the elastic breaks in a certain segment is 
proportional to the length of  this segment. Under this "natural"  hypothesis 
we can now easily calculate the probabilities. 

We see that the three points v, u, and - u  are situated in a plane 
through the diameter of the spheres (see Fig. 1). Also the point a is in this 
plane, which means that the point P moves in this plane. Let us call y the 
angle between the lines [0, u] and [0, v]. Then, since [a, v] is orthogonal to 
[u, - u ] ,  and d(0, u) = r, 

r( 1 - cos ~) = 2r sin 2 El d(u, a) 
z 

and 

E2 = d( - u, a) = r( 1 + cos 7) = 2r cos 2 _7 
2 

Since d( - u, u) = 2r, we can find the probabilities: P(Pu [Pv) = {probability 
that i f P  is in v, it will be changed by eu and end up in u} = {probability that 
E2 breaks} = {length o f [ - u ,  a] divided by length of [u, - u ]}  = cos2(7/2); 
P(p_,~,) = {probability that if P is in v, it will be changed by e, and end 
up in - u }  = {probability that E~ breaks} = {length of [u, a] divided by 
length of [u, - u ] }  = sin2(7/2); these are the same probabilities as the ones 
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related to the outcomes of a Stern-Gerlach spin experiment on a spin-l/2 
quantum particle, of which the spin state in direction 

v = (r cos q~ sin 0, r sin ~b sin 0, r cos 0) 

is represented by the vector (e-i~/2 cos 0/2, e ;~/2 sin 0/2) and the experiment 
corresponding to the spin measurement in direction 

u = (r cos/3 sin e, r sin/~ sin e, r cos e) 

by the self-adjoint operator 

// cos c~ e -"~ sin ~'~ 1 

/ \e;~ sin ~ - c o s  ~ / ] 

in a two-dimensional complex Hilbert space, which shows the equivalence 
between our example and the quantum model of the spin of a spin-l/2 
particle. 

It is well known that the probability model corresponding to this 
physical situation (isomorphic to the probability model of the spin of a 
spin-l/2 quantum particle) is non-Kolmogorovian. This has been shown in 
Accardi and Fedullo (1982), and a simple proof can be found in Aerts 
(1986). Also, the lattice of properties of this situation is isomorphic to the 
lattice of properties of the spin of a spin-l/2 quantum particle, and hence 
non-Boolean, as is explicitly shown in Aerts and Van Bogaert (1992) and 
Aerts et al. (1992a).  The measurement calculus is noncommutative and also 
isomorphic to the measurement calculus of the spin of a spin-l/2 particle. 
In a completely analogous way, models of n-dimensional quantum entities 
can be constructed, using only macroscopic experimental situations with 
fluctuations on these experimental situations (Aerts, 1986), and a general- 
ization to the infinite-dimensional situation has been constructed (Aerts et 
al., 1992c). Let us proceed by explicitly introducing in a quantitative way 
the fluctuations on the experimental situations. 

3. INTRODUCING A PARAMETRIZATION OF THE 
FLUCTUATIONS ON THE EXPERIMENTAL SITUATIONS 

If we demand that the elastic can break at every one of its points, and 
the breaking of a piece is such that it is proportional to the length of this 
piece, then this hypothesis fixes the possible fluctuations on the experimen- 
tal situations. Only a certain type of elastic can be used to perform the 
experiments. We can easily imagine elastics that break in different ways 
depending on their physical construction. Let us introduce the following 
different classes of elastic: At the one extreme we consider an elastic that 
can break in every one of its points and such that the breaking of a piece 
is proportional to the length of this piece. These are the ones that we have 
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already considered,  and since they lead to a pure  q u a n t u m  structure,  let us 
call t hem q u a n t u m  elastics. At  the other  extreme, we consider  elastics tha t  
can only b reak  in one point ,  and let us suppose,  for  the sake o f  simplicity, 
that  this point  is the middle  of  the elastic [Aerts et al. (1992c) t reat  the 
general situation]. This last class are in fact not  elastics, but  since they are 
the extreme case o f  classes o f  real elastics, we still call them that.  We shall 
show that  if  experiments  are pe r fo rmed  with this class o f  elastics, the 
resulting structures are classical, and therefore we will call them classical 
elastics. For  the general case, we want  to consider  a class o f  elastics tha t  
can only b reak  in a segment  o f  length 2rE a round  the center o f  the elastic. 
Let  us call these E-elastics. Such an E-elastic o f  length 2r can only b reak  in 
the points  o f  the interval [ r ( 1 -  0 ,  r(1 + E)], and is unbreakab le  in the 
points  o f  the intervals [0, r( 1 - E)] and [r( 1 + E), 2r]. Clearly the elastic with 
E = 0, hence the 0-elastic, is the classical elastic, and the elastic with E = 1, 
hence the 1-elastic, is the q u a n t u m  elastic. In this way, the pa rame te r  E can 
be interpreted as represent ing the magni tude  o f  the f luctuations present  in 
the exper imenta l  situations. I f  E = 0, and for  the exper iment  e,  only a m o n g  
classical elastics is chosen, there are no fluctuations,  in the sense that  all 
elastics will b reak  in the same point  and  have the same influence on the 
changing o f  the state of  the entity. The  exper iments  e,  is then a pure  
experiment .  I f  E = 1, and for  the exper iment  e~ only a m o n g  the q u a n t u m  
elastics is chosen,  the f luctuations are maximal ,  because the chosen elastic 
can break  in any o f  its points.  In Fig. 2 we represent  a typical s i tuat ion o f  
an exper iment  with an E-elastic, where the elastic can only b reak  between 
the points  b and c. Let  us calculate the probabil i t ies  P(Pu ~ov) and P(P-u [P~,) 
for  state t ransi t ions f rom the state p~ of  the particle P before the experi- 
men t  eu to one o f  the states Pu or p_u.  The  length o f  the interval [b, c] is 
equal  to r(1 + E) - r(1 - c) = 2rE. Different cases are possible: I f  the poin t  
a lies between c and - u, then E2 = 0. I f  the poin t  a lies between b and c 

Fig. 2. An experiment with an e-elastic. The elastic 
can only break in the interval [b, c], where the distance 
from b to O is re and the distance from c to O is also 
re. Here E~ is the length of the interval where the elastic 
can break such that the point P finally arrives in u (in 
the drawing this is [b, a]), and E 2 is the length of the 
interval where the elastic can break such that the point 
P finally arrives at - u  (in the drawing this is [a, c]). 

u p 
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(see Fig. 2), then Ez = r(1 + cos 7) - r(1 - E) = r(E + cos 7). And  if the 
point  a lies between u and b, then E 2 = 2rE. To  f ind  a general expression for  
the probabilities, we write E2 as a function o f  y. T o  do  this we proceed as 
follows. Let  us introduce an angle 2 such that  cos 2 = c, and characteristic 
functions o f  intervals Xt~,pl(7)= 1 for  7 belonging to the interval [a, ~ ,  
while Xt~.al(7) = 0 for  7 not  belonging to the interval [a, fl]. Then  

E2(7) = 2rE -Xto,;. t + r(cos 2 + cos 7) "XE~,.~+,~/2] + O. Xp.+,~/2,,, 1 

We can now easily calculate the probabil i ty P;,(p. ~ )  that  the particle P 
will arrive at u. This is E2 divided by 2rE. Hence  

P;'(P~' [P~) = ~rE (2rE- Xt0,a t + r(cos ,1 + cos y) -  Xtz,. ~ + ~/2~ + O" X).~ + ./2,~1) 

1 
= 1 �9 Xto,;.t + 2--c0-~ (cos 2 + cos 7) "Xt~.,;. + ~/21 + O'X1;. + ,~/2,.1 

An analogous calculation gives us 

1 
P(p_.~p,,) = 0 .  Xt0,;.t + ~ (cos 2 - cos y ) '  Xt;.,.~+./21 + 1 "X1a + ~/2,~ 1 

So we have 

1 
e .(pulp ) = 1" xt0,   + 2--Co- os,  (cos,  + cos 7)" (1) 

1 
P ( P - "  [P') = 2 cos 2 (cos) ,  - cos 7) " X~,~ +./21 + 1 , X1~ + ./2,.1 (2) 

Let  us see whether  the classical case (r = 0, hence ,1 = re/2), and the 
quan tum case (E = 1, hence 2 = 0) arrives as limits o f  the general case. 

3.1. The Classical Limit (E -~0  and ,1 - * ~ / 2 )  

(a) The state p belongs to the nor thern  hemisphere (7 belongs to the 
interval [0, rr/2[). Then  if E - )0 ,  or equivalently ,l --)re/2, there is a momen t  
that  2 is bigger than 7, then we have P r ( P ~ v )  = 1 and P~(P-u [P~) = 0. The  
points v o f  the nor the rm hemisphere all arrive at u. 

(b) The  state p belongs to the southern hemisphere (7 belongs to the 
interval ]re/2, re]). Then  if E --+0, or  equivalently 2 --) re/2, there is a momen t  
that  2 is smaller than  y, then we have P,t(P. [P~,) = 0 and P;.(p_.  ~,,) = 1. 
The points v o f  the southern hemisphere all arrive at  - u .  

(c) The state p belongs to the equator  (7 = re/2). Then  

1 1 
P;'(P" [P~') - 2 cos 2 cos 2 2 
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1 1 
P;~(P-~[P~) 2 c o s 2 C ~  2 

The points of the equator have probability 1/2 to arrive at u, and 
probability 1/2 to arrive at - u .  This corresponds to the classical unstable 
equilibrium situation, a classical indeterminism. 

3.2. The Quantum Limit (~ ~ 1 and g --, 0) 

Here 

e;~(p, [p~) = 1/2(1 + cos 7) = cos2(Y/2) 

P;.(P-,  Lpo) = 1/2(1 - cos 7) = sinZ(7/2) 

3.3. An Intermediate Case (E--, ----1/2 and ~. = ~/3) 

Let us calculate explicitly the probabilities for this case: 
(a) For 7 smaller than n/3: Here P~(p, Lp~) = 1 and P~(P-u Ivy) = O. 

This is a zone, of the form of a spherical sector, with eigenstates of the 
experiment e, with eigenoutcome o I . All the states p~ of this zone will arrive 
in p,.  

(b) For 7 bigger than 2n/3: Here P~(p.  ~p~) = 0 and P~(P-u ~ )  = 1. 
This is a zone, of the form of a spherical sector, with eigenstates of the 
experiment e, with eigenoutcome o2. All the states of this zone will arrive 
in u. 

(c) For 7 between n/3 and 2zc/3: All the states in this region are 
superposition states. Let us calculate some probabilities: 

7 = n/3, P~(pu ~p~) = 1 and P;.(p_, ~v~) = 0 

7 =n /2 ,  P ~ ( p ~ )  = 1/2 and P~.(p_,~v~) = 1/2 

7 = 2n/3, P~.(p, ~ )  = 0 and P~(p_~ ~o~) = 1 

This shows that the earlier quantum region is now concentrated here, in the 
zone where 7 is between n/3 and 2n/3. 

This example shows very well the effect of the fluctuations on the 
experimental situations. We have to ask now whether it would be possible 
to perform experiments to verify whether these models correspond to the 
physical reality. We should look for experiments in the field of mesoscopic 
physics. Can an E-elastic model describe the spin-l/2 behavior of a huge 
spin-l/2 molecule? If  this would be the case, then our theory about the 
classification with decreasing fluctuations in the experimental situations 
would be able to clarify the mystery of the microworld going over in the 
macroworld. In the next section we explain a localization model con- 
structed in the same way. 
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4. A LOCALIZATION PROCEDURE 

The e-example in two dimensions gives us a clear insight into the 
classical limit process. Because of the limited number of dimensions, it is 
not clear what this process becomes for an arbitrary quantum mechanical 
entity, of which the state is described by the wave function $(x), element of 
L2(~{3). 

We have studied the procedure in the n-dimensional situation, and 
considered the limit for n -o oo, which brings us to the situation of a general 
quantum entity, and a marvelously simple procedure results. For details of 
the construction, see Aerts et al. (1992c); we only present the result here. 
We investigate the situation where we have an experiment e that is 
represented by a self-adjoint operator Ae, and the spectrum of this self-ad- 
joint operator is a subset of the set 91 of real numbers. The state p of the 
entity S is now represented by a complex function ~k(x), element of L2(~13). 
We write the wave function ~ ( x ) =  p(x)e is(x), where p(x) is a positive 
function, and then we know that ~b(x) = p2(x) represents the probability 
amplitude of the wave function $(x). We have an e given, and find the 
following procedure. We cut, by means of a constant function ~bn, a piece 
of the function ~b(x) such that the surface contained in the cutoff piece 
equals E (see step 1 of Fig. 3). We move this piece of function to the x axis 

J 
step 1, cutting of the ~-surfaec. 

has surface 

step 2, putting the cutoff piece on the x-axis. 

step 3, renormalizing by dividing by e. 

Fig. 3. 
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(see step 2 of Fig. 3). Then we renormalize by dividing by E (see step 3 of 
Fig. 3), and this gives us a function q~'(x). We define a new wave function 
~U(x) = [q~'(x)] 1/2 eiS~x) If  we proceed in this way for smaller values of E, we 
finally arrive at a delta function for the probability distribution in the 
classical limit E ~ 0 ,  and the delta function is located in the original 
maximum of the quantum probability distribution. For E = 1 we find the 
original wave function q~(x). 

Many aspects of the relation between quantum mechanics and classical 
mechanics can be investigated using this classical limit procedure. We only 
want to mention one, the problem of nonlocality. Let us investigate what 
becomes of the nonlocal behavior of quantum entities taking into account 
the classical limit procedure that we propose in Aerts et al. (1992c). Suppose 
that we consider a double-slit experiment; then the state p of a quantum 
entity having passed the slits can be represented by a probability function 
~b(x) of the form represented in Fig. 4. We can see that the nonlocality 
presented by this probability function gradually disappears when E becomes 
smaller, and in the case where ~b(x) has only one maximum finally disappears 
completely. When there are no fluctuations on the measuring apparatus used 
to detect the particle, it shall be detected with certainty in one of the slits, 
and always in the same one. If  ~b(x) has two maxima (one behind slit 1, and 
the other behind slit 2) that are equal, the nonlocality does not disappear. 
Indeed, in this case the limit function is the sum of two delta functions (one 
behind slit 1 and one behind slit 2). So in this case the nonlocality remains 
present even in the classical limit. If  our procedure for the classical limit is 
a correct one, also macroscopic classical entities can be in nonlocal states. 

X 

Fig, 4. The classical limit procedure in the situation of a nonlocal quantum state. 
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How does it come about that we do not find any sign of this nonlocality in 
the classical macroscopic world? This is due to the fact that the set of states 
representing a situation where the probability function has more than one 
maximum has measure zero compared to the set of all possible states, and 
moreover these states are "unstable." The slightest perturbation will destroy 
the symmetry of the different maxima, and hence give rise to one point of 
localization in the classical limit. Also, classical macroscopic reality is 
nonlocal, but the local model that we use to describe it gives the same statis- 
tical result, and hence cannot be distinguished from the nonlocal model. 

We also want to remark that all the interference phenomena remain 
while taking the classical limit, since the phase factor exp[iS(x)] of the wave 
function ~(x) is not changed. But the places where these intereference 
effects can be detected are restrained more and more if e ~ 0, till they 
finally are only located in the original maximum of the amplitude. We 
could say that the quantum interference phenomena localize as well when 
the fluctuations decrease with a decreasing E. 

5. CONCLUSION 

The approach that we present here, although it still has to be devel- 
oped in many aspects, provides an answer to the question that we have 
pointed out in the introduction. The existence of fluctuations of internal 
variables of the experiment apparatuses, their magnitude labeled by a 
parameter c, gives rise to quantum-like structures in all the categories that 
we have pointed out. It generates non-Boolean lattices of properties [not 
explicitly shown in this paper, but we refer to Aerts et al. (1993) for a 
detailed presentation of the example and its lattice of properties], it 
generates non-Kolmogorovian probability models (Aerts, 1986), and it 
also gives rise to noncommutative structures of observables (a detailed 
exposition in this category is being prepared). As we mentioned, these 
fluctuations on the experimental apparatuses can be interpreted as "hidden- 
variables," but then they are highly contextual, since each experiment 
brings about a different set of hidden variables. So they are not "hidden 
variables" of a "classical hidden variable theory" because they do not 
deliver an "additional, deeper" description of the reality of the physical 
entity. Their presence, as variables of the experimental apparatuses, has a 
well defined philosophical meaning, and expresses that we human beings 
want to construct a model of reality independent of the fact that we 
experience this reality. The reason is that we look for "properties" or 
"relations of properties," and they are defined by our ability to make 
predictions independent of experience. We want to model the structure of 
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the world, independent of us observing and experimenting with this 
world. Since we do not control these variables in the experimental appara- 
tus, we shall not allow them in our model of reality, and the probability 
introduced by them cannot be eliminated from a predictive human model. 
In the macroscopic world, because of the availability of many experiments 
with fluctuations that can be neglected, this procedure delivers an "al- 
most" deterministic model; indeed, remember that in the classical limit, 
the classical type of indeterminism, that we all know very well to exist, 
remains. In other regions of reality, where these kinds o f  experiments are 
not available, our model shall be nonclassically indeterministic. The pre- 
material world is such a region. There are probably other regions of the 
world where the same kind of unavoidable indeterminism appears. For 
example: the psychological region, where in general most available experi- 
ments have uncontrollable variables introducing probabilities. This simi- 
larity is at the origin of the fact that it is very hard to make mathematical 
models for these human parts of the world, and probably also of the fact 
that we often have the impression that the quantum entities behave 
"human"-like, and therefore the humorous and fashionable way of speak- 
ing about a quantum entity: "and then it chooses to collapse in this way, 
and then it decided to be in a superposed state, etc." The explicit classical 
limit for an arbitrary quantum entity in our approach explains why 
nonlocal states, and also quantum interference, becomes undetectable in 
the classical world. However, nonlocality and quantum interference do 
not disappear, and are a fundamental property of nature [see in relation 
to this question also Aerts and Reignier (1991)]. From this follows that 
we have to believe that our model of space as the theater in which all 
entities are present and move around should be considered partly as a 
human construction due to our human experience with macroscopic mate- 
rial entities. Space is the structure that can contain all entities that we 
know by means of properties for which we have measurements with 
negligible fluctuations at our disposal. Entities that do now allow us to 
characterize them only by means of negligible-fluctuation-measurements 
cannot be fitted into space. They have no place, and can only be detected, 
which means that we have forced them in a state where we can measure 
their position with a negligible-fluctuation-measurement. This forces us to 
review completely the concept of space and its relation with reality. 
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